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ABSTRACT
In this paper, three distinct deep-learning models are pre-
sented for the participation in Track 1 of the IEEE GRSS Data
Fusion Contest 2024. The objective of this challenge was to
predict flooded areas using SAR imagery of the flood events,
along with additional data such as, land cover, and more. The
first model employed in the study is a naive CNN designed
without reliance on established benchmark architectures. The
second model utilizes a U-NET architecture and is trained
from scratch. Finally, the third model is built by fine-tuning
a pre-trained SegFormer, that uses a hierarchical transformer
architecture. We conclude that the SegFormer model gave the
best performance for the task, with an F1-Score accuracy of
83.8%.

1. INTRODUCTION

The increased onslaught of natural disasters brought about by
climate change has been well-noted in recent years [1] and
improving the ability to quickly deal with the damage brought
on by these events has become a shared focal point across
many sectors such as governmental, private, humanitarian and
scientific. Remote sensing imagery has historically played a
valuable role in extreme weather event management and re-
sponse, but recent advancements in deep learning technolo-
gies have allowed the leveraging of this data in an especially
promising and powerful way that allows faster and more effi-
cient prediction of damage extent and emergency response.

The goal of the present study is to explore this synergy
between remote sensing and natural disasters, specifically in
the context of floods and flood mapping. We compare the
performance of three different neural network models in pre-
dicting flooded areas from various SAR inputs. These data,
as well as the motivation behind this analysis, were provided
by the 2024 Data Fusion Contest (DFC) in Flood Rapid Map-
ping put on by the Institute of Electrical and Electronics En-
gineers (IEEE) in collaboration with the Geoscience and Re-
mote Sensing Society (GRSS).

The models used, namely a Naive CNN implementation,
a U-Net model, and a fine-tuned Vision Transformer model
using Segformer as a backbone, are trained to map not only
the pre-existing water bodies but also the predicted flooded
areas. The results here highlight the struggle of all three mod-
els to learn the flooded areas specifically, despite general suc-

cess at mapping the persistent water bodies. While all mod-
els performed well relative to each other (within 0.1 F1 score
points with the Segformer model holding the slight advantage
in performance), the learning paths of each model, and thus
the prediction maps, showed characteristic differences.

The rest of the paper is organized as data, models, results,
discussion, and conclusion. to five sections. The first section
explains the dataset and the pre-processing steps carried out
on the data. The second section describes the architectures
and configurations of the deep learning models deployed in
the study. The third section discusses the results of our stud-
ies. The fourth section focuses on the implications of our
analyses. Finally, the last section makes concluding remarks
and briefly discusses potential next steps.

2. DATA

The dataset provided for Track 1 or the SAR Track of the
DFC2024 challenge comprises 6 data layers. These are -
Sentinel 1 SAR imagery as VV and VH products, MERIT
DEM, Copernicus DEM (Cop. DEM), ESA Landcover Map
(LCVM), and, Water Occurrence Probability (Water Prob.).
A total of 1631 image tiles of size 512 x 512 pixels were pro-
vided for the training purpose along with the corresponding
label images containing binary information per pixel - ”wa-
ter” or ”non-water”. Additionally, there is a validation set
comprising 349 image patches with the same data layers, but
provided without label information, treated as the ’test’ data
in our studies. The datasets provided in the challenge mainly
come from the Copernicus Emergency Management Service
and a hydrodynamics modeling exercise.

We incorporated domain knowledge into the models by
deriving four additional data layers from the originally pro-
vided layers and stacking both sets together. These addition-
ally derived data layers are: 1. VV/VH ratio (Referred to as
VV/VH); 2. water binary mask (WBM) generated from the
LCVM; 3. distance transform (Distance) generated from the
WBM ; and 4. a sum of WBM with the first percentile of
heights from DEM Merit, denominated DEM Waster Mask
(DEM-WM). In all models, the input data layers, both orig-
inal and derived, were normalized using the mean-centering
approach as a pre-processing step and batch-normalized dur-
ing the training process.

The training set of 1631 images, was split into training



Fig. 1. Sample of input data layers

and validation sets with an 80-20 distribution.

3. MODELS

All three models were trained on a GPU via Kaggle. The U-
Net and Segformer were implemented in Tensorflow, while
the Naive CNN used PyTorch implementation.

3.1. Naive CNN

In the initial attempt to construct a model from scratch, a ba-
sic fully convolutional network with six layers was created,
corresponding to the six input channels. These input chan-
nels are combined to form the model’s input tensor, passing
through the convolutional layers for binary water mask classi-
fication. The output layer involves a convolution followed by
a sigmoid activation function, generating a probabilistic map
indicating water presence in the input image pixels.

Fundamentally, the model comprises of six convolutional
layers followed by spatial dropout operations. The convo-
lutional layers progressively increase in channels from 32 to
128, enabling the model to capture diverse features in the in-
put images.

The architecture utilizes rectified linear unit (ReLU) ac-
tivation functions to introduce non-linearity, enhancing the
model’s ability to comprehend complex relationships. The fi-
nal layer consists of a single neuron with a sigmoid activation
function, transforming the output into probabilities between 0
and 1, representing the likelihood of the positive class (water
presence). This choice aligns with the binary classification
task, allowing a probabilistic interpretation of the model’s
predictions.

3.2. U-NET

U-NET is a convolution neural network designed to perform
image segmentation, developed in 2015 by [2], it gained pop-
ularity due to its effectiveness to accurately segment images,
and was the second model used for the comparison.

U-NET consists of two key components: the encoder and
decoder. The Encoder’s primary goal is to capture high-level
features during down-sampling operations. Subsequently, the
Decoder up-samples images to the original resolution via a
series of up-convolutions, maintaining spatial resolution by
concatenating feature maps.

A distinctive feature of U-NET is the Skip Connections,
addressing the vanishing gradient problem and promoting in-
formation propagation. The final layer employs a 1x1 con-
volution followed by a sigmoid function, suitable for binary
classification.

Weighted Adam was selected for its adaptive momentum
characteristics, with embedded L2 regularization to prevent
model overfitting. The chosen loss function is binary cross-
entropy, quantifying the disparity between ground-truth and
predicted images.

3.3. Segformer

The third and final model tested was a fine-tuned version
of the SegFormer model, originally introduced by [3]. Seg-
former is a semantic segmentation model that relies on Trans-
former mechanisms designed by the viral 2017 research paper
”Attention is All you Need” [4] and utilized by popular Nat-
ural Language Processing models such as Chat-GPT. The
’Attention’ referenced in the aforementioned paper refers to
the Transformers’ ability to capture global relationships in
input data, as opposed to the local relationships emphasized
in CNN’s via the convolutional kernel. In other words, the
spatial relationship between elements of an image can be
learned regardless of their proximity in the original input.
The trade-off, however, is that Vision Transformer models
such as SegFormer tend to be more complex and computa-
tionally intensive than CNN’s. Indeed, the Segformer model
used boasted 3,719,362 trainable parameters.

Thus, the justification behind the employment of a Seg-
former model was twofold: 1. Assess if a model capable
of learning global spatial relationships has an improved abil-
ity to identify floods, especially outside of pre-existing water
bodies; and 2. Leverage Fine-Tuning to implement a more
complex model to assess if the increased complexity of Seg-
Former results in a ’smarter’ model.

The Segformer model backbone used in this study was the
nvidia/mit-B0 taken from HuggingFace, and pre-trained on
ImageNet-1k inputs. As a result, this particular model only
had trained weights for 3 band images (RGB). Thus, all extra
bands implemented in the present study were done so with
randomly initialized weights, the consequences of which will
be further discussed later on. An additional limitation of this
model came from the fact that outputs are restricted to 128 x
128 dimensionality, and thus required up sampling.



4. RESULTS

4.1. Metric Performances & Final Architectures

While all models underwent some level of prototyping and
versioning, metrics for the best version of each model can be
seen in Table 1 and Details on the final architectures used to
generate these metrics are stored in Fig. 2.

The F1 scores for all models were relatively high, consis-
tently staying above 0.80 and within 0.1 points of each other.
Validation Losses were similarly strong for all three models,
however the Segformer model achieves almost half of the the
loss of the convolution-based models. Batch sizes varied due
to differing memory constraints of the models and the effect is
reflected in the difference in number of training epochs (All
models utilized early stopping). The NaiveCNN converged
the fastest in only 8 epochs with a batch size of 16 (although
the simplicity of the model likely also contributed), while U-
Net took the most epochs to converge (21) and also utilized
the smallest batch size (4).

With respect to the individual models, the Segformer dis-
played strong ’out-of-the-box’ performance (that is, using all
original input bands and with- out standardization) with an F1
score of 0.80 and a validation loss of 0.07. However, upon fur-
ther versioning, the model benefited from an extra normaliza-
tion step as well as the de- rived bands as described in Section
2, save for DEM-WM. These changes boosted the F1 score by
3%, as shown in Table 1.

The U-Net similarly displayed strong performance when
trained with little manipulation using all six original bands,
achieving an F1 Score of 0.82. After many experiments with
different band combinations, the best U-Net model (U-NET-
019) utilized all four derived bands (including DEM-WM)
and, again similar to Segformer, trained without the Land
Cover layer in addition to removing the MERIT DEM layer.
However, these changes only resulted in an F1 Score increase
of 0.01. U-NET-019 also leverage regularization i the form of
a weight decay of 0.005, β1=0.9, β2=0.99.

Finally, despite being simple and straightforward, the
fully convolutional model performs better than expected on
the validation set with a final F1-Score of 0.809. The model
associated with this score implemented a 2d dropout with
p=0.2 along with a weight decay of 0.0001. As this was the
’baseline’ model, the Naive CNN also experienced the most
improvement in F1 score (from a starting point of 0.752),
emphasizing the fact that simple models can be effective, but
more care must be taken to their implementation.

4.2. Visual Assessment of Outputs

While the performance metrics for each model were quite
similar, a visual assessment of the predicted masks by each
model proved to offer much more valuabele insight into how
and why the models were performing the way they were. Fig-
ure 3 shows a comparison of the Water Probability layer (rep-

Fig. 2. Final Model Architectures

resenting persistent water bodies), the Ground truth mask and
the predicted mask for all three outputs. Notably, the Fig
3A and Fig3C represent the same location but different flood-
ing events, represented by a difference in the Sentinel 1 SAR
bands (VV, VH, and the related derive band VV/VH).

The Naive CNN, serving as the earliest working model,
highlighted from the start a common issue of models predict-
ing only the persistent water bodies and not the floods. As
such, improvement both within and across models could often
visually be marked by an improved ability to predict the en-
tire flood extent, rather than just the pre-existing water body.
Figure 3A serves as a representative example at the increasing
ability of the model to predict the entire flood extent with in-
creasing F1 Score, (i.e., Naive CNN →U-NET →Segformer).

However, this trend is not an absolute, while the Seg-
former was more often able to capture flooding outside of
water bodies, it also tended to be incredibly noisy, resulting in
an overestimation of the flooded area (Fig. 3B). While there
was some initial concern that this noisiness could be due to
the upsampling required of the segformer outputs (See Sec-
tion 3.3), plotting of the original 128x128 outputs should the
same noisy behavior.

Finally, the U-Net’s displayed interesting behavior when
analyzed visually. There were many inconsistencies with the
way the model predicted mask, where in some instances the
prediction was the best out of all three (Fig 3C), in some in-
stances it performed the same as the CNN (Fig 3A) and in
some instances it completely overestimated or mispredicted
the mask.

Table 1. Comparison of Model Training Metrics & Parame-
ters

Metric Naive CNN U-NET Segformer

Optimizer Adam Adam Adam
Batch Size 16 4 8
Epochs 8 21 15
Validation Loss 0.135 0.112 0.067
F1 Score 0.809 0.824 0.838



Fig. 3. Samples of inferences (last three columns) for com-
parative analysis

5. DISCUSSION

The results emphasize some key points that bear further dis-
cussion. The first being the emphasis of visual assessment
to understand model performance. While all three models
achieved fairly high F1 scores, in the case of the convolutional
models (Naive CNN and U-NET) this was because the mod-
els were very easily mapping the pre-existing water bodies
but struggling to capture the extra flood extent. In the context
of the DFC challenge, these high F1 scores are not enough as
they don’t actually achieve the goal set out to capture flood
damage. On the other hand, while the Segformer appeared
to have the best F1 Score and did appear to successfully map
floods, the visual inspection also allowed us to recognize that
the model was suffering from extreme over-estimation of the
flood extent.

Another interesting finding throughout the course of the
study was the role of the input data. The LCVM, for example
was an interesting testament to the value of domain knowl-
edge. Both the U-Net and the Segformer found an improve-
ment when removing this Land Cover map, and the drawback
of this layer are posited to be twofold: 1. This band contains
class-type data, and is thus harder to harmonize with the other
inputs in steps such as normalization, 2. Because there is a
strictly ’water’ class, the models could over fit to those water
areas and struggle to recognize the other potentially floodable
areas that are not in the ’water’ class. Given this, the WBM
derived from the land cover class (which included the areas
classified as water but also other areas we deemed ’floodable’
such as wetlands) proved to be a useful repurposing of the
original input data, as the best versions of both U-Net and
Segformer improved when this layer was used over the Land-
cover.

6. CONCLUSION

This project aimed to tackle the challenge set out by the IEEE
GRSS Data Fusion Contest on Rapid Flood Mapping using
SAR imagery. We presented three different deep learning
methods to tackle this problem; a naive CNN, a U-Net, and a
fine-tuned Segformer. Overall, the models performed accept-
ably with an F1 Score between 0.80 and 0.85, however visual
analysis showed very differing behaviors between the models.
The convolutional models struggled to capture the flooded ar-
eas in addition to the pre-existing water body, while the fine-
tuned Segformer had a high tendency to produce noisy out-
puts that overestimated the flood extent.

In general, however, this project suffered greatly from the
constraints on time and resources. In an ideal world, more
iterations of each model would have been run under simi-
lar constraints in order to better facilitate model comparison,
but timing restricted the extent to which the models could
be harmonized. Additionally, the successful implementation
of HPC resources could have allowed for improvement mea-
sures such as a data augmentation. Future steps on this project
would certainly center in these two aspects.

In summary, the presented models are not quite ready to
be used as the cutting edge response to flood event emergency
response. However as an exploratory and academic endeavor
and with respect to their personal and professional develop-
ments throughout the course of this study, the authors of this
paper find the outcomes to be a great success.
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