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Abstract

Society is currently experiencing an energy transition, where geological hydrogen could be
a clean solution. Naturally, the Earth emits H2, which can be observed in Sub-Circular De-
pressions (SCDs) already identified on several continents. To accelerate the identification and
mapping process of these SCDs, freely available earth observation data and well-established
methodologies from mathematical morphology, such as Pattern Spectra (PS), can be utilized.
This research aims to map SCDs using PS, Attribute Filtering (AF), and Shape-Spaces tech-
niques applied to hierarchical Digital Elevation Model (DEM) representations.

These hierarchical representations, referred to as trees, form the basis of variousmethodolo-
gies in mathematical morphology, including the established PS technique. This methodology
serves as a benchmark for the innovations introduced in this work: AF in Shape-Spaces and
PS in Shape-Spaces. Additionally, considering trees and their characterizing attributes, this
research theoretically presents a new attribute termed Estimated Slope.

When the new methodologies were applied to SCD delimitation, they exhibited limitations,
particularly in filtering medium-sized structures. The Intersection over Union (IoU) and
False Positive Rate (FPR) metrics were relatively low, ranging between 11-31% and 68-93.9%,
respectively, primarily due to the high number of false positives that were filtered out.
The selection of attributes and the threshold algorithm did not achieve optimal values for
histogram segmentation. Despite these limitations, the new methods demonstrated increased
robustness, as the number of false positives was reduced and only rounded structures were
filtered out compared to the base methodology.

In order to verify the effectiveness of the new methodologies, it would be worthwhile
applying them to other image analysis domains, to map the SCDwith more suitable attributes,
to use a modern threshold approach, and to develop the Estimated Slope attribute algorithm.
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CHAPTER 1
Introduction

Currently, we are experiencing a sharp energy transition from polluting sources to renewable
energy sources. Climate pressure, coupled with heavy investment, is causing countries to
diversify their energy matrices beyond coal, gas, and oil, for example (Floristean, 2020; Moretti
and Webber, 2020).

Hydrogen is one of the energy sources that has received a lot of attention in recent years.
This is due to its high energy potential and small carbon footprint. There are several ways
to obtain hydrogen, and its different origins are classified by color, resulting in what is called
the hydrogen rainbow. Figure 1.1 shows the most common energy sources of H2 and the
production process used. In total, there are 10 types of hydrogen, classified by the production
process, energy source and whether CO2 is emitted or not (Incer-Valverde et al., 2023).

Figure 1.1: The main generation sources of H2 and their classification: green hydrogen,
generated from electrolysis using renewable energy and zero CO2 emissions; blue
hydrogen, generated from natural gas by reforming it, leading to CO2 emission;
white hydrogen, naturally generated; pink H2, produced in nuclear power-plants
by electrolysis and without CO2 emissions. Source: Author, 2024.

Although Incer-Valverde et al. (2023) briefly mention that it has origin from natural sources
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Chapter 1: Introduction

Figure 1.2: Example of studied fairy circles in several countries. A) Australia; B) Russia; C)
Namibia; D) Brazil. All images at a scale of 1:50.000. Satellite source: Google Earth.

in Earth’s subsurface. These deposits can be accessed via a well, as has been the case in Mali
since 2012, producing energy with zero emissions and at a cost of less than 1 dollar per kilo
of H2 (Moretti and Webber, 2020; Willige, 2022). Despite this example, hydrogen system and
setting must be further investigated in order to transform the raised hypothesis into factual
concepts (Frery et al., 2021).

Some studies try to identify possible origins for white hydrogen, which depends on the
rock types and chemical environment (Lévy et al., 2023; Moretti et al., 2022). Such subsurface
deposits are subject to geological conditions, and H2 can be exuded through conductive faults,
generating rounded depressions without the presence of vegetation, where high concentra-
tions of H2 and methane are detectable in the soil when compared to the surrounding regions
(Larin et al., 2015).

Many ellipsoid structures, known as Fairy Circles (FC) or Sub-Circular Depressions (SCD),
were already identified within cratonic regions, such as in Namibia (Moretti et al., 2022),
Australia (Frery et al., 2021), Turkey (Etiope, 2023), Russia (Larin et al., 2015) and Brazil
(Prinzhofer et al., 2019), as shown in Figure 1.2.

2



1.1 Motivation

1.1 Motivation

1.1.1 Thematic Motivation
Numerous researches have been carried out on all continents with the aim of obtaining
more information about SCD and how they can contribute to the development of the energy
industry. However, the use of satellite images and remote sensing has been little explored in
the identification of hydrogen sources, except for a couple of examples Carrillo Ramirez et al.
(2023); Lévy et al. (2023); Moretti et al. (2022); Mosquera-Rivera et al. (2024).

From a geological point of view, there are several round structures that can be formed
during the evolution of a terrain. The SCD is one more ellipsoid/rounded formation that can
be seen from space with the aid of Earth Observation (EO) products, such as freely available
Digital ElevationModel (DEM).Moretti et al. (2021) conducted a comprehensivemorphological
profiling of SCD and compared them with other geological structures, such as dolines, which
are also rounded formations. Their research revealed that SCDs typically have a gentle slope
and are shallow, with depths up to 10 meters. In contrast, dolines are characterized by depths
greater than 10 meters and slopes exceeding 50%.

Moretti et al. (2021) concluded that the primary goal of their study was to establish mor-
phological criteria. Later, this knowledge about the SCD could be applied in remote sensing
products, such as multispectral imagery and DEM. So far, Moretti et al. (2022) were able to use
these products to analyze around the SCD, but not in an automated form. Considering this
goal and the detailed profiling of SCD, questions arise regarding how to develop a more direct
and automated workflow for identifying and delineating SCD structures using EO products.
The development of such a procedure could significantly benefit researchers and companies
by aiding in the early exploration phase of projects. This would ensure that regions of interest
contain the desired SCD formations rather than other geological structures, such as dolines,
leading to more accurate and efficient field mapping.

1.1.2 Methodological Motivation
To carry out this SCD scanning, a field of Computer Vision called Mathematical Morphology
can be used. In this area there are several methodologies capable of performing operations
such as image segmentation, image filtering, pixel classification, both on regular images and
on images generated from remote sensing. Two widely established methodologies, such as
Pattern Spectra and Attribute Filtering, may be tools capable of delineating SCDs. Despite
the advances made in this area over the last decade, there are no researches combining these
methodologies with H2 exploration, as it is a very new subject.

With the advancement in the field of image analysis, image processing and image classi-
fication, this whole workflow could be done utilizing the newest deep learning approaches.
However, one of the goals here is to perform structure delineation without using methodolo-
gies that are computationally expensive. In this matter, PS and Attribute Filtering are strong
candidates to find this equilibrium. In addition, the developments in this field in the last decade
show that considering approaches other than deep learning are still valid (Santana Maia et al.,
2021).
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In this way, the presentwork has themotivation of uniting these two different fields of study,
as well as proposing novelties using the Pattern Spectra and Attribute Filteringmethodologies,
with more recent topics, such as Shape-Spaces, to extract SCD from DEM. The importance of
such novelties goes beyond the development of mathematical morphology methodologies, but
also to demonstrate whether the combination of PS and Attribute Filtering with Shape-Spaces
is a valuable approach or not. In this sense, the current research can help in two fronts: in the
computer visionmethodological advancements and in using suchmethods for the H2mapping
and exploration.

1.2 ResearchQuestions
In order to achieve the desired implementation of the workflow to delineate and identify the
SCD, we will be using computer vision techniques applied to the DEM, such as Pattern Spectra
(PS) and Shape-Spaces, where from attributes (i.e., compactness, area, height), it is possible to
filter regions in the image that correspond to a specific threshold. To analyze the application of
computer vision tools on the extraction of SCDs, the following research questions are raised:

1. Which accuracy can be achieved for fairy circle delineation using medium resolution DEM
and Pattern Spectra and the proposed methodological novelties?

2. Does regular Pattern Spectra application performs better than the new methodologies
proposed?

3. Can new pattern spectra attributes be generated based on prior knowledge of the inclination
of structures from past morphological studies?

1.3 Objectives
The research questions presented lead to the following objectives:

• To use regular pattern spectra attribute profile to delineate the desired structures;

• To identify possible strengths and limitations on regular attributes for extracting these
structures;

• To apply PS and attribute filtering within Shape-Spaces as a new methodological ap-
proach;

• To develop a new attribute based on expert knowledge, such as presented by Moretti
et al. (2021) about the slopes of the SCDs.
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1.4 Study Area

1.4 Study Area
The study area is located in the Moora-Pingarrega area, Western Australia (Figure 1.3). This
area was chosen for the following reasons: the presence of studies in the same area with
measurements proving the presence of H2 in the soil of the structures (Frery et al., 2021);
the existence of geological and geophysical data; the availability of DEMs for the region of
interest; the high density of SCDs of different sizes and different roundness characteristics,
thus allowing the different methodologies to be tested.

Figure 1.3: Location of the Study Area and H2 Measurements done by Frery et al. (2021)

With the availability of expert knowledge and ground truthmeasurements makes it possible
to assess the structures using EO products. With these types of data, it is feasible to identify,
delineate the Fairy Circles and extract their features.

The Moora-Pingarrega region is within the North Parth Basin (Figure 1.4). Its terrain is
mainly undulating, with some hills and valleys (Mory et al., 2005). The area was chosen by
Frery et al. (2021) due to its geological setting. Located in this basin with complex structural
geology, in the west part of the Yilgarn Craton, the region is controlled by the Darling Fault.

A geological model was developed by Frery et al. (2021), based on the analysis of regional
geology, structural, geophysics and lithology. The hypotheses based on themodel indicate that
the hydrogen seeps are located along major Darling Fault zone, which makes its surroundings
compartmentalized. This characteristic means that beneath the surface, there are a lot of
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Figure 1.4: North Perth Basin, modified from Mory et al. (2005)

smaller fault families that are responsible for conducting the H2 gas from the depths to the
surface, forming the SCD. In addition to conducting, these faults can alsowork as traps, leading
to an H2 reservoir, however it needs further investigations in order to prove it (Frery et al.,
2021).

The H2 generation rocks in the region could be related to the Proterozoic Iron-Rich Granite
or Pre-Cambrian ultramafic rocks near-by the Darling Fault. These possible sources mean
that, according to Lévy et al. (2023), the H2 in the region could be classified as Type I or Type

6
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II, depending on which rocks the chemical reactions are occurring (see Table 2.1 for types
explanation).

1.5 Thesis Structure
The structure of the thesis is as follows:

• Chapter 1 introduces the basic concepts of hydrogen-emitting structures, study area,
and the motivation for carrying out this research and the objectives.

• Chapter 2 presents the literature review on hydrogen, related work and the mathemat-
ical morphology topics, such as trees, attribute profiles, pattern spectra and connected
operators.

• In the Chapter 3 the materials and methods used to develop the current thesis, besides
the proposed methodologies.

• Chapter 4 the results obtained are presented and,

• discussed in Chapter 5, followed by the limitations, conclusions and future works.
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CHAPTER 2
Literature Review

2.1 Background on Hydrogen Seeps
Hydrogen seeps, also known as Fairy Circles and Carolina Bays, are SCD, with depths reaching
up to 10m, gentle slopes, having their diameter ranging from a hundred meters up to a couple
of kilometers (Moretti et al., 2021; Zgonnik, 2020). One can only affirm that it is a hydrogen
seep when it leaks H2, that’s why it is necessary to monitor these structures during a couple
of months in order to guarantee that it is emitting H2, since the activity can be intermittent
(Moretti et al., 2021; Prinzhofer et al., 2019). Some studies point that the emission of H2
happens in pulses, havingmoments with higher and lower flow, being able to reach zero (Larin
et al., 2015; Prinzhofer et al., 2019).

Hydrogen seeps with H2 exudation has been mapped all around the world (Carrillo Ramirez
et al., 2023; Etiope, 2023; Frery et al., 2021; Larin et al., 2015; Lefeuvre et al., 2021; Moretti et al.,
2022; Prinzhofer et al., 2019), with one special case in Mali, where is actively producing energy
for the last decade (Diallo et al., 2022).

Despite this single example, natural hydrogen exploration is in its infancy. Researches
still have a lot to understand about the gas generation, geological setting for trapping and
conducting the gas (Frery et al., 2021; Moretti et al., 2021; Zgonnik, 2020); and studying from
its leakages on Earth’s crust can point to large reservoirs in the subsurface (Zgonnik, 2020).
Tracing a parallel, right now the hydrogen industry is in the same pace level as was the oil and
gas industry back in the 19th century (Smith et al., 2005). Back then, the oil and gas exploration
happened in shallow depths, and turned to be successful, which could be a cheap and fast way
to also test for hydrogen (Moretti et al., 2021).

The Hydrogen Cycle needs to be better understood. Yet, there is a proposed classification
of the three main processes that generate the natural hydrogen in the subsurface (Lévy et al.,
2023):

• Redox of Fe+2

• H2O Radiolysis

• Pyrolisis of Organic Matter
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The rocks (Lévy et al., 2023) and geological context (Moretti et al., 2021) necessary for these
reactions to happen are:

Table 2.1: Rock Types and Geologic Context necessary for H2 reactions.

Rock Types Geological Context
Basic and ultrabasic rocks from the
mantle

Extension zones (e.g., Atlantic
Ridge)

Iron bearing rocks Compression zones with ophiolites
(e.g., Oman)

Radioactive rocks Stable cratonic basins with
Archean to Proterozoic basement
(e.g., São Francisco Craton)

Organic rocks, such as coal and
shale

Once the H2 gas was generated in the depths, it needs a fault, so it’s possible to migrate
Johnsgard (1988); and trap, to avoid it from leaking. According to Subbota and Sardonnikov
(1968, see on page 9, apud Zgonnik (2020)), such traps could be a layer of clay, salt or an aquifer
(Vacquand, 2011). Due to the fact the hydrogen gas has the least amount of molecules from the
whole elements groups, it is the lightest, giving it a characteristic of rapid diffusing, in air and
materials (Zgonnik, 2020). Summed up to that, it is a gas without color, odorless and non-toxic,
which becomes even harder to identify some leakage. As a consequence of its characteristics,
the hydrogen seeps weren’t discovered until recently (Larin et al., 2015; Prinzhofer et al., 2019,
2018; Sukhanova et al., 2013). So far, for example, there are a couple of models and studies that
indicates that these type of structures occurs near fault zones (Frery et al., 2021; Larin et al.,
2015).

The hydrogen industry and researches are quickly escalating. As the time passes by, more
institutions and governments are interested in this topic due to the possibility of generating
clean energywith relatively low cost. A couple of example are: the Colombian government has
created law to foment these types of discoveries (Carrillo Ramirez et al., 2023); and Germany
put natural hydrogen in their energy strategy plan in 2020 Diallo et al. (2022).

This governmental fomentation and companies willingness across the world builds the
perfect momentum to increase the knowledge over the H2 system and the SCDs. Using EO
products combined with mathematical morphology can be an interesting strategy applied to
the H2 emitting structures, seizing industry’s momentum.
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2.2 Background on Trees, Attribute Profile and Pattern
Spectra

2.2.1 Trees
In digital image processing, connected pixels with similar values are grouped into objects,
giving rise to the connected components. This concept, which was presented by Serra (1998),
had such a positive effect that it led to other studies, like connected operators in binary and
grayscale images (Heijmans, 1999; Salembier and Serra, 1995; Serra, 1998; Serra and Salembier,
1993).

It was then realized that this concept would be very relevant, since it could be implemented
in image filtering and segmentation (Salembier and Serra, 1995), with the use of thresholds to
select the desired elements (Perret et al., 2012). These components, which are selected from
the values, can easily be represented hierarchically in a tree structure (Salembier et al., 1998).

Hierarchical trees, a type of connected operator, have two main groups (Bosilj et al., 2013):
inclusion trees and partitioning trees, as exemplified in Figure 2.1.

Figure 2.1: Differences from Partition and Inclusion Trees. Source: Bosilj et al. (2017).

Inclusion Trees are representations of partial partitions of an image, involving nested
supports and components that are produced via the creation, expansion, and merging of image
blocks (Ronse, 2014), for example, there aremax-tree,min-tree, and tree-of-shape. On the
other hand, partitioning trees are full partitions of the image. These trees begin with the
finest partitions stored in the leaf nodes. Pixels are successively merged until one node is left
per level, known as the root node, into which the whole image domain fits (Bosilj et al., 2018).
Binary partition tree, alpha tree and omega tree are examples of partition trees.
It is worth noting that inclusion trees need a total order of pixel values, but partitioning

trees are constructed based on the dissimilarity measure between neighboring pixels and
therefore require a total order of the image’s edges, but not of pixels themselves (Bosilj et al.,
2017). Moreover, inclusion trees are designed to capture extrema-oriented information; such
trees may contain small regions or points (e.g., local image maxima or minima), meanwhile
partitioning trees are used to partition an image and leaves and cuts indeed represent different
partitions of an image. For that reason, partitioning trees are well suited for processing
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multivariate data, as they can hold information about an object at intermediate gray levels
without necessitating a strict total order of pixel values (Bosilj et al., 2017, 2018).

The min-tree and max-tree are types of inclusion trees (Ballester et al., 2003). The max-
tree has its local maxima (bright pixels) in the leaves, meanwhile the root is composed by dark
pixels. Themin-tree has the opposite behavior. These are the trees commonly used in pattern
spectra analysis (Bosilj et al., 2016a; Guiotte et al., 2020), which is the next covered topic. Tree
of Shapes (ToS) is a combination of max-tree andmin-tree that seeks representing both dark
and bright pixels. The local extrama’s levels of ToS don’t necessarily represent maximum and
minimum intensities (Géraud et al., 2013).

Binary Partition Tree (BPT) (Salembier and Garrido, 2000), have pixels, flat areas or other
thin partition in the leaves. As a consequence, it is the tree with most flexibility due to the fact
that distinct structures can be generated by utilizing distinct definitions of the region model
and the merge criteria (Merciol et al., 2014). The alpha-tree is generated based on the pixel’s
similarity. Its regions are defined by a fixed alpha distance between two pixels. Finally, the
omega-tree tries to solve the alpha-trees’ chaining effect. Meanwhile, alpha-tree sets an alpha
distance for pixels, the omega-tree have an attribute called omega that limits the maximum
difference between the lowest and highest grayscale in each connected component.

Since its proposal, the trees were responsible for the basis of mathematical morphology in
many developed researches. There are uncountable works that used either inclusion trees or
partition trees. The list is quite extensive, but as example of trees usage, it’s possible to list
image filtering and image segmentation (Jones, 1997), change detection (Tushabe and Wilkin-
son, 2008), classification (Urbach et al., 2007) and remote sensing (Boldt et al., 2014; Cavallaro
et al., 2015; Ghamisi et al., 2014). In this research, the objective is to generate an inclusion tree,
specifically a min-tree from a DEM and apply different mathamtical morphology methods,
such as PS.

2.2.2 Pattern Spectra
Pattern Spectra (PS), proposed by Maragos (1989), is an image descriptor based on mathemat-
ical morphology. It has become an essential tool for understanding the structural composition
of images by analyzing the distribution of sizes and shapes of image components (Bosilj et al.,
2016b).

PS features a structure based on histograms, displaying the distribution of elements within
an image. Following the construction of trees, various statistical and geometrical attributes
can be calculated for each tree node. PS then illustrates how these attributes behave in a
histogram (Mirmahboub et al., 2021). By establishing a direct link between attribute values and
corresponding image areas, PS can highlight significant regions based on selected attributes,
making it a strong tool for image analysis (Guiotte et al., 2020).

Reading the histogram generated by the attributes is straightforward. In each axis there
is an attribute. The sum of two one-dimensional histograms lead to a 2D Spectrum (Bosilj
et al., 2016b), exhibiting a distinct pattern. This graphical representation is delineated by the
selection of threshold values for each attribute. Consequently, only a subset of nodules is
delineated, facilitating the identification of regions of interest within the analyzed image.
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Since it can be efficiently applied to a max-tree and min-tree hierarchy, PS have received
several extensions from the original concept throughout the years. In this manner, PS was
effectively applied to image classification (Urbach et al., 2007) and image retrieval (Tushabe
and Wilkinson, 2008). Bosilj et al. (2016b) demonstrated its efficacy in retrieving image
patches instead of the whole image. Another extension was the application of descriptors
based on local pattern spectra, introduced by Bosilj et al. (2016a). Such novelty brought
speediness to the retrieval of satellite imagery. In addition, it reduced the dependency on
feature vectors, improving the results related to dense STIF approach, proposed by Ozkan
et al. (2014). Also, Lefèvre (2009), proposed the combinations of attributes that describe various
object characteristics, such as orientation, color, spectral, spatial information and intensity, but
they presented limitations because of their 1D properties.

More recently, Mirmahboub et al. (2021) employed the fast PS which aimed parallel pro-
cessing by a sliding window over a large image and find the areas of interest. The results
were positives, since it was capable of improving local pattern spectra. In the application
field, Guiotte et al. (2020) utilized PS to extract terrain features from a high-resolution DTM
generated from LiDAR. These examples underscore the versatility of PS in diverse image anal-
ysis tasks. For the current work, PS will serve as a baseline method, and also be implemented
within Shape-Spaces. Finally, all methodologies will be compared in order to see whether
these proposals are relevant or not.

2.3 Background on Attribute Profile, Tree Filtering and
Shape-Space

2.3.1 Attribute Profile
Introduced by Dalla Mura et al. (2010), an Attribute Profile (AP) is a method in image analysis
that involves the application of attribute filters based on specific criteria to analyze and
decompose an image according to the chosen attributes. It allows for a detailed examination
of the image’s structural information by considering various characteristics or properties of
the regions within the image.

Such novelty aimed to overcome the limitations with the Morphological Profile (MP) ap-
proaches, such as computation complexity, partial characterizations of objects leading to a
partial analysis, and structure element constraint (Dalla Mura et al., 2009, 2010). Since AP and
Attribute Filtering are correlated topics, a lot of the extensions and improvements done in the
AP can be applied in the other. Specially when it comes to threshold setting and selection of
attributes.

The first publications about AP presented only 4 attributes: area, moment of inertia,
diagonal length of bounding box and standard deviation (Dalla Mura et al., 2010). With
time, more attributes were introduced such as entropy, homogeneity (Dalla Mura et al., 2010),
complexity (Das et al., 2018), perimeter and area of bounding box (Bhardwaj et al., 2019),
solidity (Bhangale et al., 2017), and many others more.

SantanaMaia et al. (2021) states that it is fundamental to choose a significant set of attributes
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in order to obtain a good classification based on the interested structures. In case of not
knowing the optimal combination, it is good practice to use the most common combined
attributes.

Regarding the threshold of the attributes, it is known that the optimal selection of values
have a direct relationship with the AP performance (Aptoula et al., 2016). In order to find the
best threshold, many studies propose equations (Ghamisi et al., 2014) and supervised learning
algorithms for attributes clustering (Mahmood et al., 2012). Besides these two examples, there
are other recent develop that propose solutions for the topic, such as Cavallaro et al. (2017)
proposal on using Granulometry Characteristics Functions (CGFs) for selecting thresholds
automatically. With these approaches, it is possible to overcome the expert knowledge based
threshold setting (Dalla Mura et al., 2011).

In the tree filtering part, there wasn’t developments as in the other AP parts, as mentioned
before. Next section brings more information about tree filtering.

2.3.2 Tree Filtering
Connected Operators, defined by Serra and Salembier (1993), are a filtering strategy in order to
obtain flat zone regions (sets of connected pixels in an image that have uniform intensity val-
ues) by merging them. Connected operators have an outstanding performance on preserving
contour properties, being capable of recognize high-level objects but also low-level filtering
(Salembier and Wilkinson, 2009; Xu et al., 2016).

Filtering a tree’s attributes with increasing behavior is elementary. It can be a straight pro-
cess if the attribute has increasing criterion (Santana Maia et al., 2021). If the attribute’s node
does not respect the threshold, it is deleted. When an attribute increases, it’s similar to cutting
off a branch from the tree because if a node doesn’t meet the threshold, none of its descendants
do either (Xu et al., 2016). On the other hand, non-increasing attributes presents a complicated
approach, as the descendants of a node to be removed may not have been removed, leading
to oscillations in decisions (Salembier and Wilkinson, 2009; Santana Maia et al., 2021). As a
workaround, there were two tree pruning and two threshold-based approaches, such as Max
Rule, Max Rule Direct Rule (Salembier et al., 1998; Salembier and Wilkinson, 2009) and
Subtractive Rule (Urbach et al., 2007).

TheMaxRule involves pruning the branches from the leaves up to the first node that needs
to be maintained. This strategy ensures that the nodes closer to the tree’s root, which need to
be preserved based on the non-increasing criterion, are retained while removing unnecessary
branches. TheMin Rule has the same idea as the Max Rule, but instead of pruning the leaves
up to the first node to be preserved, it does the contrary, by pruning branches from the leaves
up to the last node that needs to be removed (Salembier et al., 1998).

The Direct Rule involves directly applying the non-increasing criterion to each node in
the tree and making pruning decisions based on this criterion. This strategy directly evaluates
the criterion at each node without considering the relationships between nodes, allowing for
a straightforward pruning process based on the criterion (Salembier et al., 1998).

Finally, the Subtractive Rule concerns subtracting the non-increasing criterion value
of a parent node from the criterion values of its children nodes to determine the pruning
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decisions. When using the subtractive rule, the pruning decisions are based on the difference
in criterion values between parent and child nodes, allowing for a more nuanced approach to
tree simplification with non-increasing criteria (Urbach et al., 2007).

Despite the workaround approaches to the difficulties of filtering a tree with non-increasing
criterion, Xu et al. (2016) states that such rules have downsides, specially when trying to prune
a tree where two objects within the same branch are the desired ones to be segmented.

2.3.3 Tree Filtering on Space of Shapes
As there was a methodological gap in this research field, Xu et al. (2016) proposed the
Shape-Space. It is a derived filtering domain built upon the Image-Space. It allows for fil-
tering operations on subtrees, leading to results that generalize existing tree-based connected
operators systematically. The Figure 2.2, better illustrates how the methodology works.

Figure 2.2: The black path represents the classical connected operators. The proposal made
by Xu et al. (2016) is represented in the red and black path, which is shape-space
filtering. Source: Xu et al. (2016).

It uses the connected components benefits of preserving image contours effectively during
processing. By encoding the inclusion relationships between connected components, shape-
space methods maintain the structural information of shapes in the image. This preservation
of contours leads to more accurate shape analysis, segmentation, and feature extraction tasks.
In addition, shape-space representations are robust to variations in image properties due to
their invariance to contrast changes.

Shape-space techniques aim to improve shape analysis by providing a structured and
organized environment for shape manipulation. By computing attributes that characterize
each shape or connected component within the graph representation, shape-space enables
the quantification of shape properties and facilitates shape-based operations.

The computation of Shape-Spaces involves transforming the image into a graph structure,
computing shape attributes, and applying connected filters for shape manipulation. Attributes
are derived to quantify shape properties such as area, gray level, or more advanced shape
attributes.
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All these concepts presented in the 2.3 Section are the fundamental basis for the novelty
that shall be presented in this research. From these ideas, it will be proposed the extension of
Shape-Spaces by applying Attribute Filtering and PSwithin it, seeking to identify the strengths
and weaknesses of these approaches.

2.4 Related Works
The work done by Moretti et al. (2021) which brought the statistical characterization of the
SCDs leveraged a substantial potential for the development of works using remote sensing and
EO products in this specific field. By then, the SCD didn’t have a profiling about its shape and
depth. Since the publication, this research field started utilizing remote sensing in the pre-field
phase of the exploration campaigns.

Later, Moretti et al. (2022) proposed the utilization of normalized indexes from Landsat-8
images, such as Normalized Difference Vegetation Index (NDVI), Normalized Derived Built-up
Index (NDBI), Soil-adjusted Vegetation Index (SAVI), DEM and costal aerosol bands. The goal
was to delineate the vegetation ring around the SCD.When compared with the previous work,
where it was mainly used Google Earth Images as data source, in this more recent publication
presented a more structured workflow using EO data. Using the more robust approach, Lévy
et al. (2023) analyzed different SCDs in distinct periods of time, aiming to present the relevant
tools and workflows to identify and map potential emitting structures.

More recently, Mosquera-Rivera et al. (2024) presented a workflow using multiple methods
to identify possible concentrations of SCDs. A combination of numerous datasets, such
as PRISMA Hypespectral Imagery, Landsat Level-2, Copernicus DEM and Geophysical data
(Radiometric, Megnetometric and Gravimetric) were used along with multiple methodological
strategies, like PCA, band ratio, water and vegetation indexes. So far, it is the most extensive
work done applying remote sensing on the identification andmapping of Sub-Circular Depres-
sions (SCD)s. The results presented were promising, since they were capable of identifying
potential regions. For further works, Mosquera-Rivera et al. (2024) suggest the application
of other spectral algorithms, machine learning for classification as well as the integration of
morphology-based features using DEM.

Despite the recent evolution in the application of Earth Observation (EO) products in the
mapping of SCDs, the contribution of the current research aims to provide one methodological
approach applied to DEM in order to delineate the SCDs. It solves the gap in the literature by
using applying mathematical morphology methodologies, such as PS and Attribute Profiling
on DEMs. The objective is to help to map these structures over large areas, as well as give
the necessary attributes to confirm whether it is a SCD or not by its slope characteristics, an
expert knowledge generated in Moretti et al. (2021).
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This chapter discusses the materials and methods used in this study. Figure 3.1 represents the
workflow, providing a better visualization and understanding of the thesis’ entire develop-
ment. Below, each of the boxes will be addressed, with the assumptions and strategies pointed
out. The boxes with a red border stand out, as they indicate the novelties presented by this
work.

Figure 3.1: Thesis materials and methods. The boxes in red are the proposed methodologies.
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3.1 Dataset Description
For all analysis the TanDEM-X 30m Edited DEM is used, with 30m resolution, provided by the
German Aerospace Center (DLR). It is an edited product from the TanDEM-X Global DEM,
which has 1 arc second. In fact, this product represents the surface, not the ground elevation, as
described in its documentation, therefore being technically characterized as a Digital Surface
Model (DSM). Yet, it’s an accurate product with absolute horizontal and vertical accuracy
below 10m; slopes below 20% have 2m accuracy, and above 20% have 4m, also with a 90%
confidence level (Wessel, 2018).

3.2 Ground Truth Generation
As described in the previous section, the area of study was chosen due to previous studies in
the area.

Despite developing the research in an area already surveyed, there aren’t ground-truth
masks available as a guide to compare with the outputs. Having that in mind, it was generated
a ground-truth mask SAMGEO (Zhao et al., 2023), a QGIS plug-in based on Meta’s Segment
Anything Model (SAM) that allows the user to segment features automatically. The image
used for segmentation was the RGB composition, with 10m spatial resolution, from Sentinel-2,
imaged onMarch 21, 2024. The ground truthwas generated around the areaswhereH2 leakage
was measured, as shown in Figure 3.2.
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Figure 3.2: Distribution of Ground Truth measurements based on image segmentation.

3.3 Tree Generation from TanDEM 30m
The Higra library will be used to generate a min-tree from the DEM, although the same can
be done with SAP. The idea of using Higra is because it has a higher control level than SAP,
and also, the latter was built on the first. With its creation, it’s possible to store the tree edges
and altitude easily, which will be important to future processing steps. Also, the functions for
characterizing, processing and iterating the tree have better compatibility with this specific
library.

The tree generation with Higra is required to first generate a graph that will serve as the
weights of the tree. For the generation of the graph, there are a lot of building options, but for
this research, it was chosen to create trees based on implicit undirected 4 adjacency graphs of
the image’s shape.

Following that, the computation of the min-tree takes as input the recent generated graph
and the DEM, and its generation have as output the tree and its node altitudes. From the tree
output, it’s possible to generate different attributes, filter the tree’s node in order to perform
different types of image analysis.
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3.4 Tree Filtering Methodologies

3.4.1 Pattern Spectra
The implementation of Pattern Spectra is important to serve as a baseline and further be
compared with other proposed methodologies, since it is a widely used approach. Based on
Guiotte et al. (2020), the selected PS attributes selected were:

• area: the surface area on the node;

• volume: the volume of a node equals the area multiplied by the difference in elevation
with its parent, plus the combined volumes of all its children;

• height: the difference in elevation between the node’s parent and the lowest node in its
subtree;

• compactness: compactness of the node’s shape, calculated as 16 times the area divided
by the perimeter squared. Compactness values range from 1 for compact shapes like
circles to 0 for non-compact shapes.

First, amin-tree was generated from the DEM with the SAP library. Then, each one of the
selected attribute is calculated. To obtain the thresholds aiming to highlight the structures,
LaPSUs software (Avellaneda and Merciol, 2024) was utilized to select the most interesting
values for each one of the attributes above (Table 3.1). Following that, 6 2D Spectrum maps
were created in order to check which pair of filtered attributes performed the best. The maps
are: area x compactness, area x height, area x volume, volume x height, volume x compactness
and height x compactness. Finally, the evaluation part was done with IOU and FNR.

Table 3.1: Minimum and maximum values for different attributes.

Attribute Min Max
Area 102 ×1 103 ×2

Volume 102 ×4 103 ×4
Height 0 12

Compactness 0.05 0.6

3.4.2 Attribute Filtering within Space of Shape
One of the novelties of this work involves applying automatic thresholding within Shape-
Spaces in order to reconstruct the image using Yen Threshold algorithm (Yen et al., 1995). It
is a multilevel threshold algorithm that takes into consideration: the disparity between the
thresholded and initial image; and the amount of bits necessary to represent the thresholded
image. The aim of its utilization is to test whether this approach turns to be accurate or not
when reconstructing the image using non-increasing attributes. Since the H2 seeps are mainly
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circular, it is calculated the circularity index for each tree node, in order to identifywhich nodes
fit into a seep characterization.

The steps are similar to what Xu et al. (2016) has presented. First, a tree is generated from
the original DEM, followed by the removal of large area components. After, the circularity
for each node is calculated and added to the tree as edges. Following that, the second tree is
created based on the undirected graph for circularity values and the circularity values itself.
Next, it is obtained the area, depth, volume, and height attribute values based on the second
tree to perform further filtering.

Instead of filtering the tree in Shape-Spaces with an arbitrary value, let this part be done by
the Yen Threshold. To implement such approach, one should apply the Yen threshold algorithm
to the non-increasing criteria attributes that were obtained in the last step. Finally, reconstruct
the attributes to the first tree and obtain the results.

The Yen Thresholdmethodwas chosen due to its capabilities of finding an optimal threshold
value that separates the foreground from the background. In this case, it is expected that the
segmentation happens on the edge between the round structures and image background.

3.4.3 Pattern Spectra Applied to Space of Shapes
The other innovation brought by this research is the addition of Pattern Spectra (PS) applica-
tion inside the Space of Shapes. The idea, just like the proposal presented in the last section,
is to use non-increasing criterion attributes to perform the filtering based on them, also using
the Yen Threshold algorithm to select the boundaries.

With PS, it is possible to obtain the value of distinct attributes and better filter the regions.
This approach allows obtaining more tree nodes that have a better representation of the
structures, since only one attribute might not be the most suitable.

To apply PS within the Shape-Spaces, the same strategy as before is utilized. After obtaining
the values of thresholding with Yen algorithm, apply the PS, followed by image reconstruction.

3.4.4 Theoretical Proposition of Estimated Slope As a New Attribute
Given the limitations of the previous attributes, summed to the geomorphological character-
ization of FC (Moretti et al., 2021) and the Higra software (Perret et al., 2019), this research
proposes the Estimated Slope as a new attribute for the Pattern Spectra analysis, following
then a characterization of the H2 seeps. Also, as a consequence of this novelty, the research
can contribute to the development of Higra.

In studies using DEM, one of the alternatives for obtaining the slope of a given region is
through the difference in height between the initial point Y0 and the final point Y1 divided by
the horizontal distance L (Equation 3.1) (U.S. Geological Survey, 2022). The estimated slope
can be calculated by having the attribute values of volume and area for each tree node, and
also by obtaining the diameter of the structures.

Slope= Y1 −Y0

L
(3.1)
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In order to implement the estimated slope algorithm, it is necessary to initially generate a
tree. Then identify the center of the leaves from the average of the coordinates. Next, from
the central point, calculate the diagonal of the smallest possible bounding box that surrounds
the structure at each node-level, represented by the letter L. The minimum values of L, which
represent the diameter of the leaves, need to be saved so that they can be used in the future
for the difference between the diameter of a top node and the leaf.

To calculate the average height of a node, it is necessary to use Volume (V) and area (A),
because dividing them gives the mean grayscale value XG, which represents the height of a
specific node. Once again, it is essential to keep the mean grayscale values of the leaf, for the
same reason as the diameter.

Since L is the diameter of a structure, it’s necessary to divide the Equation (3.2) by 2 to
obtain the radius, which represents the distance between the center point and the edge. This,
will guarantee that the estimated slope is in one direction only.

With these attributes, you can estimate the slope by substituting the variables into Equation
(3.1). Thus, the estimated slope equation is:

Slope= XGnode −Gmin
Lnode−Lmin

2

(3.2)

For the purpose of simplification of the equation, we finally have Equation (3.3):

Slope= 2×
XGnode −Gmin
Lnode−Lmin

(3.3)

Figure 3.3 brings an example for calculating the Estimated Slope, taking into consideration
all the necessary variables to solve the equation. The example considers that G3 is 15, and
Gmin is 3, and their diagonals are respectively 10 and 1.5.
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Figure 3.3: Estimated Slope conceptual example

Estimated Slope Algorithm Implementation

In the code block below, the logical implementation of the Estimated Slope algorithm:
1 Build the Min-Tree:
2 Construct a min-tree from the input image.
3
4 Identify Center Nodes:
5 For each leaf node in the tree:
6 Store the area (A) and volume (V) of each leaf node.
7 Compute the sum of X and Y coordinates of all pixels within the node

.
8 Calculate the center coordinates:
9 X_center = sumX / area
10 Y_center = sumY / area
11 centroid = X_center, Y_center
12
13 Find Edge Points:
14 For each node in the tree:
15 Generate a bounding box (BB) around the nodes pixels from the

centroid.
16 Store the minimum and maximum bounding box values for each node.
17 Calculate the diagonal (L) of the bounding box, representing the

diameter of the node structure.
18 Store the diagonal value that is minimum for further computations (
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L_min).
19
20 Calculate Grayscale Values:
21 For each node in the tree:
22 Compute the average grayscale (G) value:
23 G = volume / area
24 Store the grayscale value that is minimum (G_min).
25
26 Estimate Slope:
27 For each node in the tree:
28 Calculate the estimated slope from each node:
29 estimated_slope = (Node Average G - G_min) / (L - L_min)
30 Divide by two to have one direction slope in percentage.

3.5 Evaluation Metrics
Considering the different methodologies that will be used, it is necessary to carry out the
evaluation based on ground truth. In this way, Intersection Over Union (IOU) and False
Positive Rate (FPR) were chosen.

The IOU, commonly used in binary classification tasks, indicates howmuch of the prediction
intersects the ground truth (Shah, 2023). An IOU of 1 means that the prediction completely
overlaps the ground truth, so the higher the index, the better the result. As these are binary
predictions, the IOU is calculated as shown in Equation 3.4 :

IOU=
TP

TP+FN+FP (3.4)

where True Positive (TP) are the corrected predicted pixels; False Negative (FN) means that
the classification indicates a condition that does not exist, characterizing a Type II error. FN
indicates the pixels that are missed by the model. False Positive (FP) represents the pixels that
are falsely identified by the model.

The FPR is a very common metric used in binary classification, and uses the same classes
as IOU, as shown in Equation 3.5. Therefore, the False Positive Rate (FPR) indicates the
probability that a true negative will be incorrectly classified as positive by the test. The higher
the FPR, the poorer the performance of the classification algorithm.

FPR =
FP

FP+T N
(3.5)
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4.1 Pattern Spectra Applied to DEM
Pattern Spectra applied to DEM using arbitrary threshold values, as the baseline method,
overall, as shown by the metrics in Table 4.1 and by the images in the figs. 4.2 to 4.7.

All attribute maps generated by the methodology presented low IOU values, varying be-
tween 15.5% and 20.8%, in addition to high FPR, between 84.9% and 89.8%. Negative results are
highly influenced by structures that are very small, as the algorithm was not able to detect
them. Furthermore, several structures present in the tree generated from the DEM were
highlighted, even if they do not have rounded or ellipsoidal characteristics.

The methodology also presented an inability to filter the largest FCs in some cases. In other
words, in certain maps, there was only delimitation of the medium structures, thus being
another reason for the deterioration of the metrics.

To obtain these results, the values presented in Table 3.1 were used, and represented in an
illustrated form in Figure 4.1. In each image, each axis represents a different attribute. The
horizontal lines indicate maximum and minimum values for the Y axis, and the vertical lines
represent the values for the X axis. Therefore, the filtering took into account only the tree
nodes that are within the polygon generated from these limits.

Table 4.1: Metrics obtained from the PS methodological application

Attributes IOU FPR
Volume Compactness 0.208 0.849

Volume Height 0.189 0.869
Compactness Height 0.172 0.898
Area Compactness 0.159 0.892

Area Height 0.156 0.897
Volume Area 0.155 0.888

The attribute map with the best metrics was Volume x Compactness, with IOU of 20.8%
and FPR of 84.9%. Thismap, presented in Figure 4.3, was able to highlight large andmediumH2
emitting structures, but was unable to filter out the smaller ones, which have a high density
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(a) Area vs. Compactness Spec-
trum

(b) Area vs. Height Spectrum (c) Area vs. Volume Spectrum

(d) Height vs. Compactness
Spectrum

(e) Height vs. Volume Spectrum (f) Volume vs. Compactness
Spectrum

Figure 4.1: 2D Spectrum of 2 Attributes Variables

in the study area. Another point of attention is the presence of false positives with more
elongated shapes, different from FCs. Despite this, it was the map that presented the greatest
ability to filter FP, when compared to the others. The Volume x Height attribute map (Figure
4.2) presents a very similar pattern, but with more FP, which justifies the degradation of its
metrics.

The third-best attribute map (Figure 4.4) shows a substantial difference in its visualization.
Although it is still able to delineate medium, large and some small FCs, it presents a substantial
amount of FP. As a consequence, it has the highest value for FPR, despite having the third-best
IOU. Once again, like the previous ones, this map was not able to filter structures that are only
rounded.

The other attribute maps (Figures 4.5, 4.6, 4.7) follow the pattern of filtering FP structures
with non-rounded formats. Furthermore, they are unable to filter small and large structures,
only medium ones, showing a greater level of inefficiency.
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Figure 4.2: Volume x Height
Attributes Map.

Figure 4.3: Volume x Compactness
Attribute Map.

Figure 4.4: Compactness x Height At-
tributes Map.

Figure 4.5: Volume x Area Attribute
Map.
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Figure 4.6: Area x Compactness At-
tributes Map.

Figure 4.7: Height x Area Attribute
Map.

4.2 Attribute Filtering within Space of Shape
The second methodology, Attribute Filtering in the Space of Shapes, presented an improve-
ment when compared with the baseline methodology, which was the Pattern Spectra. Table
4.2 and figs. 4.9 to 4.12 show the results here obtained. The better IOU and reduction in
FPR indicate that this proposed methodology can better delineate structures with fewer false
positives. This result may be linked to some factors such as the strategy of applying circularity
weight to the space of shapes tree and also the affinity of the methodology of filtering nodes
in a non-increasing criteria system.

Table 4.2: Metrics for the Non-Increasing Criterion attribute filtering.

Attributes IOU FPR
Depth 0.113 0.939
Height 0.268 0.781
Volume 0.268 0.781
Area 0.270 0.778

In this methodological application, three of the four attributes showed better results than
those previously obtained with PS. Except for the results obtained by filtering the depth
attribute, the others showed IOU values between 26.8% and 27%, and a lower FPR rate. In both
metrics, there was a positive variation of 10%, i.e. an improvement on the results obtained
with the other methodology.
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With IOU between 11% and 27%, FPR between 77.8% and 93.9%, the maps generated by
the four attributes mostly filtered out rounded structures, unlike what was seen in results
involving PS. However, this methodology proved incapable of delimiting the plurality of FC
sizes. Some large and small structures were highlighted, but without a well-defined pattern.
This analysis does not apply to the Depth attribute (Figure 4.9), since it delimited almost all
FC, but also highlighted numerous structures that are not rounded, showing a very high FPR
rate.

The histogram of nodes in the shape space tree was segmented using the Yen algorithm,
marked by the red line in Figure 4.8. Looking at the histograms, we see that Depth has a
different distribution of nodes to the other attributes. This behavior is probably related to
filtering from the outer tree to the inner tree, within the space of shapes. The depth attribute
computed from the tree in space of shapes has values for all nodes, which indicates the depth
of that node within that tree. Differently from the other attributes, where they had part of
their nodes removed due to the filtering from the first to the second tree.

(a) Depth Histogram (b) Volume Histogram

(c) Area Histogram (d) Height Histogram

Figure 4.8: Attribute Filtering within Space of Shape Histograms

The attribute with the best metrics was Area (Figure 4.11), with IOU of 27% and FPR of
77.8%. When compared with the best map generated by PS, it shows an improvement of 7.2%
in IOU and a reduction of 7.1% in FPR. Making the same comparison with the other attributes
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that performed well in the same methodological application, Height and Volume (Figures
4.10, 4.12 ), it can be seen that there was a slight change in the output, but not significantly
impacting the final result. The same filtering pattern for rounded structures such as FP, as well
as highlighting practically the same FCs shows why the difference between IOU and FPR are
0.2% and 0.3% respectively.

In general, the results presented by filtering attributes in the space of shapes seem to be
more robust to FP when compared to PS. Applying a circularity weight to the space of shapes
tree helps in this regard. This prevents structures that meet the threshold but do not have a
sufficient circularity index from being removed from the image.

Figure 4.9: Depth Map. Figure 4.10: Volume Map.
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Figure 4.11: Area Map. Figure 4.12: Height Map.

4.3 Pattern Spectra within Space of Shape
The last methodological approach, Pattern Spectra within Space of Shape, is the one that
presents the best results so far when comparing with both PS and Attribute Filtering in Space
of Shape. Table 4.3 shows how this strategy has achieved the best indicators so far, 31% and
68% respectively in IOU and FPR. Figures figs. 4.14 to 4.19 displays the generated 6 maps.

Table 4.3: Metrics for the Pattern Spectra Applied in the Space of Shape

Attributes IOU FPR
Depth Volume 0.310 0.680
Depth Area 0.310 0.680
Height Area 0.280 0.781
Area Volume 0.280 0.781
Height Volume 0.280 0.781
Depth Height 0.115 0.938

Deficiencies of the previousmethodologies can still be seen here, such as the lack of a pattern
in the delimitation of FCs. Once again, the medium structures have not been highlighted, only
the large and small ones. The structures that indicate FP also have the same rounded model,
which is a consequence of the circularity index.

Another relevant fact is that filtering based on Pattern Spectra helps to reduce the percent-
age of FP, thus indicating that filtering an image with two attributes makes the process less
susceptible to error. In the three best maps presented in the three methodologies, there was a
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reduction in FPR from 84.9% in PS, to 77.8% in attribute filtering in space of shape to 68% in PS
within Space of Shape. In total, a reduction of 16.9%. The combination of attributes brought
better results and then the tree filtering with only one, as presented in the last subchapter.

Figure 4.13 shows the 2D spectra and how they were filtered according to the Yen threshold
algorithm. From these histograms, the trees were filtered, and the results were obtained. The
Depth x Volume and Depth x Area attribute maps showed the best results. The other three,
Height x Area, Area x Volume and Height x Volume performed well, with IOU and FPRmetrics
above the other methodologies, being 28% and 78.1% respectively.

(a) Volume vs. Area 2D Spec-
trum

(b) Volume vs. Height 2D Spec-
trum

(c) Volume vs. Depth 2D Spec-
trum

(d) Area vs. Height 2D Spectrum (e) Area vs. Depth 2D Spectrum (f) Height vs. Depth 2D Spec-
trum

Figure 4.13: Attributes Spectrum of PS within Space of Shape.

The main difference between the two best maps and the other three was the amount of FP,
since they were able to highlight similar FCs. The only attribute map that didn’t perform well,
following the same pattern presented in the previous methodology, was Depth x Height.

Thus, it can be seen that PS applied to the Space of Shapes is more robust to FP, which
improves the metrics in general.
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Figure 4.14: Volume x Height
Attributes Map.

Figure 4.15: Area x Height Attribute
Map.

Figure 4.16: Depth x Volume
Attributes Map.

Figure 4.17: Depth x Height Attribute
Map.
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Figure 4.18: Area x Depth Attributes
Map.

Figure 4.19: Volume x Area Attribute
Map.
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CHAPTER 5
Discussions Conclusions

5.1 Metrics Evolution
The results indicate that there were improvements in themetrics when comparing the baseline
method (PS) with the two novel methods introduced: attributes filtering and PS applied within
the Space of Shape (Figure 5.1).

The improvement in metrics is directly associated with a reduction in FP present in the
images. The reduction of FPR is attributed to the construction of the tree in the Space of
Shape based on circularity weight. The tree construction based on circularity is evident in
the outcomes of the methodologies within Space of Shape. While the PS output exhibits a
range of elongated structures that are neither rounded nor ellipsoidal, the other two methods
predominantly filtered out nodes with rounded characteristics.

A difference in the filtering of structures was observed only in the outputs that had depth as
an attribute. This attribute, utilized exclusively in the Space of Shapemethodologies, produced
both the most and least favorable results. This variability is likely linked to the generation of
the second tree within the Space of Shape after the filtering of the first tree. As previously
mentioned, the depth attribute within the Space of Shape includes all depth values, takes into
consideration all node depths from root to leaves. In contrast, other attributes had some nodes
removed during the transition from the first to the second tree. This behavior is illustrated in
Figure 4.8.

The reason for changing from using compactness to depth from the first methodology to
the last two was due to compactness returning several null values, which occurred during the
calculation of circularity, resulting in divisions by zero. It was hypothesized that the depth
of the nodules would be pertinent for filtering, particularly in the context of a non-increasing
criteria scenario. This scenario implies that filtering is not straightforward; for instance, a
parent node may not be part of the region of interest for filtering, yet its child node is.

Contrary to initial expectations, this substitution of attributes appears to have influenced the
results of the methodologies within the Space of Shape. As noted by Santana Maia et al. (2021),
achieving accurate results through attribute filtering requires selecting the most relevant
attributes for the analysis. The high variability observed suggests that depth may not have
been the appropriate attribute.
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(a) PS Metrics

(b) Attribute Filtering in Shape-Spaces Metrics

(c) PS in Shape-Spaces Metrics

Figure 5.1: Metrics for the three methodologies presented in this research.
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5.2 Attributes Performance and Threshold Setting

5.2.1 Attributes
Among all the attributes employed in the three methodologies, none exhibited a significant
standout effect. Specifically, no attribute was capable of substantially increasing the IOU rates
and reducing the FPR while selectively filtering SCDs. An unexpected scenario emerged when
analyzing the depth attribute, which was responsible for both the best and worst metrics.

In the Pattern Spectra application, the attribute that performed optimally was compactness,
especially when combined with other attributes. In the Attribute Filtering in Shape-Spaces
methodology, the attributes of area, volume, and height achieved IOU values that were
relatively close to each other, indicating an improvement over the previous methodology.
Lastly, in the Pattern Spectra applied to Shape-Spaces, depth combined with area and volume
enhanced the results further but produced the worst outcomes when combined with height.

This high variability and imprecision in filtering the structures may be attributed to several
factors. Firstly, the attributes chosen may not have been the most significant, as indicated
by (Santana Maia et al., 2021) Secondly, the threshold algorithm may have failed to optimally
delineate the regions in the histogram.

To address the issue of attribute selection, future research should evaluate the use of
alternative attributes for image filtering. Another promising strategy could involve the use of
the attribute proposed in this work, Estimated Slope. This attribute considers the calculation
of the slope of the structures, which are known to have a slope up to 8% (Moretti et al., 2021).
The integration of Estimated Slope, along with new attributes, may facilitate more precise
delimitation of SDGs, thus demonstrating its effectiveness.

5.2.2 Threshold
Another factor contributing to the inaccurate delineation of structures might be the use of the
Yen threshold algorithm. Threshold selection is crucial as it directly influences performance
output (Aptoula et al., 2016). The algorithm was selected for its ability to separate the
histogram such that the background is distinguished from the foreground. It offers an
automatic method for value delimitation, enhancing reproducibility compared to manual
methods.

The Yen algorithm is not ideal for histogram separation for this specific case. Yet, it surpasses
manual selection methods. To achieve better delimitation of the SDGs and consequently
improve IOU and reduce FPR, it is necessary to explore other threshold strategies.

In the last decade, numerous authors have proposed automatic threshold selection for
Attribute Profiling, which can be applied to Attribute Filtering and Pattern Spectra. One
such approach is the utilization of GCFs, leveraging tree construction to identify meaningful
thresholds (Cavallaro et al., 2017). Another possible approach is the use of machine learning
algorithms to determine the most significant values for threshold.
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5.3 Limitations
In summary, the methodologies presented here have limited capacity to delimit SCDs, which
is the thematic focus of this work. There has been a notable improvement in the proposed
methodologies, especially with regard to the reduction in FPs, indicating better robustness.
This increase in robustness can be interpreted as a positive point of the methodological
proposals of this research.

The limitations are found especially when it comes to delimiting SCDs with medium sizes,
since very small or very large structures can be highlighted. This makes it difficult to create a
workflow capable of identifying and mapping structures in large regions.

For future work, updating the parameters identified here is necessary and important if
the limitations are to be reduced as much as possible. In addition, the changes will help to
understand whether the application of these methodologies in the identification and mapping
of SCDs is relevant or not.

5.4 Final Thoughts
Energy transition is an ongoing global issue that is currently being tackled to ensure sus-
tainable development. The emergence of H2 as a non-polluting energy can play a key role
in this transition. The geological hydrogen exploration industry is taking its first steps, and
understanding the exudation structures and all the geology involved is a fundamental step for
the best development of operations.

In this way, the SCD served as a thematic basis for proposing and testing methodologies
for the theoretical basis, which is morphological mathematics. Using methodologies such as
Pattern Spectra, Attribute Filtering and Shape-Space, the aim was to identify structures from
trees generated from a DEM, test and propose attributes, and check the behavior of Yen as a
threshold algorithm.

More specifically, regarding the methodological novelties presented here, the idea is to
combine strategies that are alreadywell-established in the field of morphological mathematics,
and to create an extension by applying them to the Space of Shape. This emerges as a solution
for filtering trees that are characterized by non-increasing criteria, which makes filtering trees
more complicated.

The application of the methodologies to the thematic base presented a few limitations, such
as the failure to delimit medium-sized structures. This behavior was directly reflected in the
low IOU and FPR values. Despite this drawback, there was a substantial increase in the metrics
when compared to the PS methodology, used as a baseline. This increase in metrics have a
relationship with the decrease in FP, indicating that applying PS and Attribute Filtering within
Shape-Spaces can increase the robustness of the filtering.

From the methodological development, it became clear that using the Yen algorithm is
not an interesting choice for finding the optimal threshold values. Nevertheless, it is a
better alternative than manually selecting the values. Also, the introduction of the Estimated
Slope attribute, although not yet algorithmically implemented, can potentially enhance the
structure detection by incorporating expert knowledge. Future work focusing on algorithmic
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development and testing this attribute could validate its effectiveness and relevance.
The use of freely available 30-meter resolution DEM data underscores the scalability and

practicality of these methodologies. They can be adapted and applied to different regions and
datasets, making them versatile tools for geological hydrogen exploration.

5.5 Future Works
In order to continue the methodological development using Shape-Spaces, it is necessary to
carry out the following in future work:

• Apply more advanced methods for selecting values from histograms. Having a well-
optimized algorithm is fundamental to obtaining good results;

• Try to use other attributes, since these are also directly related to good filtering results.
The attributes presented here showed great variability, indicating that they may not be
ideal.

• Algorithmically develop, test and evaluate the proposed Estimated Slope attribute. This
could have a positive impact on the mapping of vast regions.

• Apply the methodologies proposed in Shape-Spaces to other areas of image processing
and classification in order to validate and understand whether they can really improve
the robustness of the final results.
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