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Objectives

To design a regression machine-
learning pipeline to process and

predict Zn (ppm) concentration
from stream sediment samples

dataset




Overview

1. Dataset Explanation




1 . Data Set EX p | a n ati O n ( 1 ) Data source = «Brazilian Geological Survey »

- 706 samples 3 B

- 52 columns | TR O £ el
o 5 were information about each a

sample (Map IDX, Lab processed, — ™| w.o¢ <tw o i chdele e
o0 47 columns of elements g X s TN AN RS A

concentration " SR TRt S g
= We want to predict the AW ' Ut

concentration of Zinc (Zn) in
PPM (parts-per-million)

Samples are blue dots, in gray are the watersheds.



1. Dataset Explanation (2)

- Pre-processing

- Normalization
- Estimating Correlation

- The dataset has spatial : T
autocorrelation ' ]
o Regular train-test-split won't work for
us! o ‘e
- We decided to do train-test-split
using GroupKFolds, where the .
groups were the watershed ID. TR
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1. Dataset Explanation - Metrics

- Chosen metrics:

o R?%: It gives us an estimate of the variance in the independent variable that can
be explaned by the dependent variable

o RMSE: It gives us a metric in ppm for Zinc, were it's possible to identify not
only the performance but how much the model is being penalized.
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2. Regression Models




2. Regression Models

* Multiple Linear Regression
o All elements to predict Zn

o CV GroupKFold
= RMSE: 13.75

= R2:0.566
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2. Regression Models: Regularization

Residual Plot Ridge

* Ridge Regression
o All elements to predict Zn
o Regularization

= Slight increase in bias to reduce a %
lot variance "
* Optimal LR at 4.83 -
" R%0.59 e
= RMSE: 13.43

e Reduction of variables that don't have
importance in the model.
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3. Random Forest




3. Random Forest

Labelled
training set

1 2 3

Bootstrap Decision Tree-1 Decision Tree 2 Decision Tree 3

aggregation
BEre8 | Class A ‘ | Class B | Class &
I

* Propose a protocol that |
relies on the out-of-bag

(OOB) error

e RandomForest
Hyperparameter Setting: goiiag

sampling

* Bootstrapping + feature sampling Buiding the rees

on a random set

* max_features = features in each of features
tree

* n_estimators = number of trees

s classification tree
Final class
across levels

Reference: https://medium.com/nerd-for-tech /rando m-forest-sturdy-al gorith m-d60b9f9140d4
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max_features

params mean_test_score | std_test score
{'max_features" 0.1} | 0.643443 0.051902
{'max_features: 0.2} | 0.657936 0.051251
{'max_features" 0.3} | 0.660969 0.053202
{'max_features: 0.4} | 0.658543 0.057185
{'max_features" 0.5} | 0.656734 0.058457
{'max_features: 0.6} | 0.651456 0.062576
{'max_features" 0.7} | 0.646503 0.066120
{'max_features: 0.8} | 0.641971 0.070297
{'max_features" 0.9} | 0.635826 0.074615

-  Model Evaluation:
o R2%0.62
o RMSE: 13.83

QOB error rate vs. number of trees

n_estimators

vperparameter tuning using OOB error
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Feature Selection: Permutation importance
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* Randomly shuffle the R
values of a specific feature i1
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REFCV - Recursive Feature Elimination with

Cross-Validation

* Eliminates one feature or a small
set of features at a time using
cross-validation (CV)

—100 -

—150 4

=

Recursive Feature Elimination with Cross-Validation

@ —200
* Optimal Feature Subset g

& —250 4
* Improved performance g

= RMSE: 11.76 7

= R%2:0.67 ~350

10 20 30 40
Number of features selected
Selected features: ['x", 'y', "Ba (ppm)', 'Ca (%)', "Co (ppm)', 'Cr {(ppm)}', "Cu (ppm)}', "Fe (%), 'K (%)', "Li (ppm)', "Mg (%)"]
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4. XGBoost

Instﬁx}ce
* XGBoost (Extreme Gradient Boost) is a |
machine learning algorithm introduced by =~ "5 Residal 7N Residl TN
Chen and Guestrin (2016).
. . Tree-1 Tree-2 Tree-3
 The base of XGBoost is the Gradient Tree | ¢ ;
. . . . Result 1 Result 2 Result 3
Boosting machine learning algorithm that : |
builds an ensemble decisiontree, where [ sum
each tree attempts to correct errors from ¢
o inal Resul
previous trees. rinal et
* XGBoost uses Gradient Descent when Wang et al, 2020

trying to minimize the loss function when
adding new models to the existing ones.


https://www.researchgate.net/publication/348025909_Predicting_the_Risk_of_Chronic_Kidney_Disease_CKD_Using_Machine_Learning_Algorithm
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4. XGBoost
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5. Final Considerations




5. Final Considerations: Model Comparison

Multi Linear Ridge Random Random XGBoost

Metric/Model . g . Forest Feature XGBoost Feature
Regression Regression Forest . .

Selection Selection
R2 0.57 0.59 0.62 0.67* 0.64 0.58

RMSE 13.75 13.41 13.83 11.76* 13.47 14.48



5. Final Considerations: Model Comparison

- Overall, models perfomed slightly well
o ldeally, a good model should have >=75%

- Possible solutions:
o Removal of outliers (makes the model simpler)
o Increase the amount of data to train the model (expensive)

o Look for a geostatistical methodology that tries to take into account these
outliers and still guarantee the model's good performance.

o GitHub Repository



https://github.com/rodreras/StreamSamples_ML
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