Machine Learning Project: Stream Sediment Samples

Khizer Zakir & Rodrigo Brust Santos

08/12/2023

- 1. Dataset Explanation
- 2. Regression Models
- 3. Random Forest
- 4. XGBoost
- 5. Final Considerations

Objectives

To design a regression machinelearning pipeline to process and predict Zn (ppm) concentration from stream sediment samples dataset

1. Dataset Explanation

- 2. Regression Models
- 3. Random Forest
- 4. XGBoost
- 5. Final Considerations

1. Dataset Explanation (1)

- 706 samples
- 52 columns
 - 5 were information about each sample (*Map IDX, Lab processed, x, y*)
 - o 47 columns of elements concentration
 - We want to predict the concentration of Zinc (Zn) in PPM (parts-per-million)

Data source = «Brazilian Geological Survey »

Samples are **blue** dots, in **gray** are the watersheds.

1. Dataset Explanation (2)

- Pre-processing
 - Normalization
 - Estimating Correlation
- The dataset has **spatial autocorrelation**
 - Regular train-test-split won't work for us!
- We decided to do train-test-split
 using GroupKFolds, where the
 groups were the watershed ID.

Moran's I Spatial Autocorrelation among samples

1. Dataset Explanation - Metrics

- Chosen metrics:

 R²: It gives us an estimate of the variance in the independent variable that can be explaned by the dependent variable

 RMSE: It gives us a metric in ppm for Zinc, were it's possible to identify not only the performance but how much the model is being penalized.

- 1. Dataset Explanation
- 2. Regression Models
- 3. Random Forest
- 4. XGBoost
- 5. Final Considerations

2. Regression Models

- Multiple Linear Regression

 All elements to predict Zn
 CV GroupKFold
 RMSE: 13.75
 - R²: 0.566

2. Regression Models: Regularization

- Ridge Regression
 - $\,\circ\,$ All elements to predict Zn
 - \circ Regularization
 - Slight increase in bias to reduce a lot variance
 - Optimal LR at 4.83
 - R²: 0.59
 - RMSE: 13.43
 - Reduction of variables that don't have importance in the model.

- 1. Dataset Explanation
- 2. Regression Models
- 3. Random Forest
- 4. XGBoost
- 5. Final Considerations

3. Random Forest

- RandomForest Hyperparameter Setting:
 - Bootstrapping + feature sampling
 - max_features = features in each tree
 - n_estimators = number of trees
- Propose a protocol that relies on the out-of-bag (OOB) error

Reference: https://medium.com/nerd-for-tech /rando m-forest-sturdy-algorith m-d60b9f9140d4

Hyperparameter tuning using OOB error

n_estimators

max_features

params	mean_test_score	std_test_score	
{'max_features': 0.1}	0.643443	0.051902	
{'max_features': 0.2}	0.657936	0.051251	
{'max_features': 0.3}	0.660969	0.053202	
{'max_features': 0.4}	0.658543	0.057185	
{'max_features': 0.5}	0.656734	0.058457	
{'max_features': 0.6}	0.651456	0.062576	
{'max_features': 0.7}	0.646503	0.066120	
{'max_features': 0.8}	0.641971	0.070297	
{'max_features': 0.9}	0.635826	0.074615	

- Model Evaluation:
 - **R²**: 0.62

• **RMSE**: 13.83

Feature Selection: Permutation importance

- Randomly shuffle the values of a specific feature in the dataset while keeping the other features unchanged.
- "mean_test_score"
 - **High** = important
 - **low** = not so important

REFCV - Recursive Feature Elimination with Cross-Validation

- Eliminates one feature or a small set of features at a time using cross-validation (CV)
- Optimal Feature Subset
- Improved performance
 - RMSE: 11.76
 - R²: 0.67

Selected features: ['x', 'y', 'Ba (ppm)', 'Ca (%)', 'Co (ppm)', 'Cr (ppm)', 'Cu (ppm)', 'Fe (%)', 'K (%)', 'Li (ppm)', 'Mg (%)']

- 1. Dataset Explanation
- 2. Regression Models
- 3. Random Forest
- 4. XGBoost
- 5. Final Considerations

4. XGBoost

- XGBoost (Extreme Gradient Boost) is a machine learning algorithm introduced by Chen and Guestrin (2016).
- The base of XGBoost is the Gradient Tree Boosting machine learning algorithm that builds an ensemble decision tree, where each tree attempts to correct errors from previous trees.
- XGBoost uses **Gradient Descent** when trying to minimize the loss function when adding new models to the existing ones.

Wang et al, 2020

4. XGBoost

Hyperparameters

- max_depth¹
- n_estimators
- learning_rate³
- subsample²
- colsample_bytree²
- max_delta_step
 - \circ Help

convergence and deal with unbalanced data

¹ Controls model complexity

² - Add randomness to help with noise.

³ - Avoid overshooting

R²: 0.64 RMSE: 13.47

R²: 0.58 RMSE: 14.48

- 1. Dataset Explanation
- 2. Regression Models
- 3. Random Forest
- 4. XGBoost
- 5. Final Considerations

5. Final Considerations: Model Comparison

Metric/Model	Multi Linear Regression	Ridge Regression	Random Forest	Random Forest Feature Selection	XGBoost	XGBoost Feature Selection
R²	0.57	0.59	0.62	0.67*	0.64	0.58
RMSE	13.75	13.41	13.83	11.76*	13.47	14.48

5. Final Considerations: Model Comparison

- Overall, models perfomed slightly well
 O Ideally, a good model should have >=75%
- Possible solutions:
 - \circ Removal of outliers (makes the model simpler)
 - \circ Increase the amount of data to train the model (expensive)
 - Look for a geostatistical methodology that tries to take into account these outliers and still guarantee the model's good performance.

References

- Chugh, A. (2022, March 16). MAE, MSE, RMSE, Coefficient of Determination, Adjusted R Squared Which Metric is Better? Analytics Vidhya. https://medium.com/analytics-vidhya/mae-mse-rmse-coefficient-of-determination-adjusted-r-squared-which-metric-is-better-cd0326a5697e
- How Spatial Autocorrelation (Global Moran's I) works ArcGIS Pro | Documentation. (n.d.). Retrieved October 24, 2023, from https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/h-how-spatial-autocorrelation-moran-s-i-spatial-st.htm
- How to Create a Residual Plot in Python—GeeksforGeeks. (n.d.). Retrieved October 23, 2023, from https://www.geeksforgeeks.org/how-to-create-a-residual-plot-in-python/
- o Kulcsar, L. (n.d.). Correlation: What is it? How to calculate it?. Corr() in pandas. Retrieved October 22, 2023, from https://data36.com/correlation-definition-calculation-corr-pandas/
- Regularization in Machine Learning || Simplilearn. (n.d.). Simplilearn. Com. Retrieved October 24, 2023, from https://www.simplilearn.com/tutorials/machine-learning-tutorial/regularization-in-machine-learning
- o Saif, J. (2023, June 26). Correlation in data analytics: Medium. https://medium.com/@JaveriaSaif/correlation-in-data-analytics-75fec1f2147d
- Tabrez, S. (n.d.). Distribution of Test Data vs. Distribution of Training Data. Retrieved October 22, 2023, from https://www.tutorialspoint.com/distribution-of-test-data-vs-distribution-of-training-data
- o https://machinelearningmastery.com/an-introduction-to-feature-selection/
- o https://machinelearningmastery.com/feature-selection-machine-learning-python/
- <u>https://www.datatechnotes.com/2022/10/feature-selection-example-with-rfecv-in.html#:~:text=RFECV%20(Recursive%20Feature%20Elimination%20with,features%20in%20a%20given%20dataset.</u>)
- o https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html
- https://scikit-learn.org/stable/glossary.html#term-CV-splitter
- o Stackoverflow support: https://stackoverflow.com/questions/44487654/build-a-random-forest-regressor-with-cross-validation-from-scratch
- <u>https://medium.com/wicds/feature-importance-feature-selection-acac802ba565</u>

Machine Learning Project: Stream Sediment Samples

Khizer Zakir & Rodrigo Brust Santos

08/12/2023